The Time-Fractional Coupled-Korteweg-de-Vries Equations
نویسندگان
چکیده
and Applied Analysis 3 Subject to the initial condition D α−k 0 U (x, 0) = f k (x) , (k = 0, . . . , n − 1) , D α−n 0 U (x, 0) = 0, n = [α] , D k 0 U (x, 0) = g k (x) , (k = 0, . . . , n − 1) , D n 0 U (x, 0) = 0, n = [α] , (11) where ∂α/∂tα denotes the Caputo or Riemann-Liouville fraction derivative operator, f is a known function, N is the general nonlinear fractional differential operator, and L represents a linear fractional differential operator. The method first step here is to transform the fractional partial differential equation to the fractional partial integral equation by applying the inverse operator ∂α/∂tα of both sides of (10) to obtain the following. In the case of Riemann-Liouville fractional derivative
منابع مشابه
A Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملForced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملLie Symmetry Analysis to General Time–fractional Korteweg–de Vries Equations
In present paper, two class of the general time-fractional Korteweg-de Vries equations (KdVs) are considered, a systematic investigation to derive Lie point symmetries of the equations are presented and compared. Each of them has been transformed into a nonlinear ordinary differential equation with a new independent variable are investigated. The derivative corresponding to time-fractional in t...
متن کاملCoupled Korteweg-de Vries equations
When a system supports two distinct long-wave modes with nearly coincident phase speeds, the weakly nonlinear and linear dispersion unfolding generically leads to two coupled Korteweg-de Vries equations. In this paper, we review the derivation of such systems in stratified fluids, extending previous studies by allowing for background shear flows. Coupled Korteweg-de Vries systems have very rich...
متن کاملA Pseudospectral Method for Solving the Time-fractional Generalized Hirota–satsuma Coupled Korteweg–de Vries System
In this paper, a new space-time spectral algorithm is constructed to solve the generalized Hirota-Satsuma coupled Korteweg-de Vries (GHS-C-KdV) system of time-fractional order. The present algorithm consists of applying the collocationspectral method in conjunction with the operational matrix of fractional derivative for the double Jacobi polynomials, which will be employed as a basis function ...
متن کامل